LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - APRIL 2023

PCH 1503 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 04-05-2023	Dept. No.	Max. : 100 Marks
Time: 09:00 AM - 12:00) NOON L	

PART A

Answer ALL questions

 $(10 \times 2 = 20 \text{ marks})$

- 1. Predict the eigen value of the function e^{x^2} with an operator $\frac{d^2}{dx^2}$.
- 2. Mention the conditions for well-behaved wave functions.
- 3. State Bohr's correspondence principle.
- 4. Determine the wave length of light absorbed when an electron in a linear molecule 10 Å long makes a transition from the energy level n = 1 to n = 2.
- 5. What is the need of approximation method for obtaining solutions to the wave equation?
- 6. Mention the significance of Secular determinant.
- 7. What are resonance and coulomb integrals?
- 8. Obtain the trace of the matrix corresponding to the operation C63.
- 9. Identify the equivalent operation to the operations i) S42 ii) S64.
- 10. Predict the Mulliken symbol for a two-dimensional representation that is anti-symmetric with respect to horizontal plane.

PART B

Answer any EIGHT questions

 $(8 \times 5 = 40 \text{ marks})$

- 11. State and explain the postulates of quantum mechanics.
- 12. (a) Normalize e^{i5x} in the interval of $(-\pi, \pi)$.
 - (b) Which of the following operators is linear, ∇^2 and $\sqrt{?}$
- 13. Arrive the Hamiltonian for simple harmonic oscillator.
- 14. Derive the expressions for wave function and energy of a particle in 1-D box of length l.
- 15. The wavenumber of the fundamental vibrational transition of $^{35}\text{Cl}_2$ is 564.9 cm $^{-1}$. Calculate the force constant of the bond (m(^{35}Cl) = 34.9688 u).
- 16. State and explain variation theorem.
- 17. Obtain the value of $[x, p_x^2]$. Mention its physical significance.
- 18. Give the assumptions of Huckel molecular orbital theory and apply it to ethylene molecule.
- 19. Find the Huckel molecular orbitals and obtain the energies for allyl radical.
- 20. Mention the proper and improper axes of rotations possible in Benzene molecule.
- 21. How are the symmetry operations of D_{3h} point group classified?
- 22. Predict the number of irreducible representations and their dimensions for *trans*-N₂F₂ molecule.

PART C

Answer any FOUR questions

 $(4 \times 10 = 40 \text{ marks})$

23. (a) Derive time-independent Schrödinger wave equation.

(5+5)

- (b) State Wien's displacement law.
- 24. Write down the Schrödinger wave equation for rigid rotator in terms of spherical angular coordinates. Using the method of separation, separate them into two independent variables such as $P(\theta)$ and $Z(\phi)$.

1

- 25. (a) Write down the Hamiltonian and Schrödinger wave equation for hydrogen like atoms.
 - (b) With the help of perturbation theorem, predict the ground state energy of Helium atom. (5+5)
- 26. Illustrate the importance of variation method to obtain the energy of the molecular orbitals of hydrogen molecular ion and also show that the energy integral

$$H_{ab} = SE + S(e^2/r_{AB}) + K.$$

- 27. a) Calculate the total π -electron energy and delocalization energy for 1,3-butadiene molecule.
 - b) Obtain the reducible representation to determine the molecular vibrations in PCl₃ molecule. (6+4)
- 28. Work out the hybridization scheme for σ bonding by boron in BCl₃ molecule using the D_{3h} character table provided.

D_{3h}	Е	$2C_3$	3C' ₂	$\sigma_{\rm h}$	$2S_3$	$3\sigma_{\rm v}$		
A' ₁	+1	+1	+1	+1	+1	+1	-	x^2+y^2, z^2
A'2	+1	+1	-1	+1	+1	-1	R_z	-
E'	+2	-1	0	+2	-1	0	(x, y)	(x^2-y^2, xy)
A" ₁	+1	+1	+1	-1	-1	-1	-	-
A"2	+1	+1	-1	-1	-1	+1	Z	-
Е"	+2	-1	0	-2	+1	0	(R_x, R_y)	(xz, yz)

\$\$\$\$\$\$\$